Electrostatic Potential
and Capacitance

every volume element AU of the slab has a dipole moment
P Avin the direction of the field. The volume element Av is
macroscopically small but contains a very large number of
molecular dipoles. Anywhere inside the dielectric, the
volume element AU has no net charge (though it has net
dipole moment). This is, because, the positive charge of one
dipole sits close to the negative charge of the adjacent dipole.
However, at the surfaces of the dielectric normal to the
electric field, there is evidently a net charge density. As seen
in Fig 2.23, the positive ends of the dipoles remain
unneutralised at the right surface and the negative ends at
the left surface. The unbalanced charges are the induced
charges due to the external field.

Thus, the polarised dielectric is equivalent to two charged
surfaces with induced surface charge densities, say o,
and —0, Clearly, the field produced by these surface charges

F)pposes the external field. The total field in th§ diele(.:tr%c FIGURE 2.23 A uniformly
is, thereby, reduced from the case when no dielectric is polarised dielectric amounts
present. We should note that the surface charge density to induced surface charge
+0, arises from bound (not free charges) in the dielectric. density, but no volume

charge density.
2.11 CaraciTOrRS AND CAPACITANCE

A capacitor is a system of two conductors separated by an insulator
(Fig. 2.24). The conductors have charges, say Q, and Q,. and potentials
V), and V,. Usually, in practice, the two conductors have charges Q
and - Q, with potential difference V = V| - V, between them. We shall
consider only this kind of charge configuration of the capacitor. (Even a
single conductor can be used as a capacitor by assuming the other at
infinity.) The conductors may be so charged by connecting them to the
two terminals of a battery. Q is called the charge of the capacitor, though
this, in fact, is the charge on one of the conductors - the total charge of
the capacitor is zero.

The electric field in the region between the
conductors is proportional to the charge Q. That
is, if the charge on the capacitor is, say doubled,
the electric field will also be doubled at every point.
(This follows from the direct proportionality
between field and charge implied by Coulomb’s
law and the superposition principle.) Now,
potential difference V is the work done per unit
positive charge in taking a small test charge from Conductor 1 Conductor 2
the conductor 2 to 1 against the field. pigurE 2.24 A system of two conductors

Consequently, Vis also proportional to Q, and the separated by an insulator forms a capacitor.
ratio Q/Vis a constant:

C= % (2.38)
The constant C is called the capacitance of the capacitor. C is independent

of Q or V, as stated above. The capacitance C depends only on the 73
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geometrical configuration (shape, size, separation) of the system of two
conductors. [As we shall see later, it also depends on the nature of the
insulator (dielectric) separating the two conductors.] The SI unit of
capacitance is 1 farad (=1 coulomb volt)or1F=1CV1A capacitor
with fixed capacitance is symbolically shown as —| |-, while the one with
variable capacitance is shown as J¢.

Equation (2.38) shows that for large C, Vis small for a given Q. This
means a capacitor with large capacitance can hold large amount of charge
Q at arelatively small V. This is of practical importance. High potential
difference implies strong electric field around the conductors. A strong
electric field can ionise the surrounding air and accelerate the charges so
produced to the oppositely charged plates, thereby neutralising the charge
on the capacitor plates, at least partly. In other words, the charge of the
capacitor leaks away due to the reduction in insulating power of the
intervening medium.

The maximum electric field that a dielectric medium can withstand
without break-down (of its insulating property) is called its dielectric
strength; for air it is about 3 x 10° Vm™!. For a separation between
conductors of the order of 1 cm or so, this field corresponds to a potential
difference of 3 x 10* V between the conductors. Thus, for a capacitor to
store a large amount of charge without leaking, its capacitance should
be high enough so that the potential difference and hence the electric
field do not exceed the break-down limits. Put differently, there is a limit
to the amount of charge that can be stored on a given capacitor without
significant leaking. In practice, a farad is a very big unit; the most common
units are its sub-multiples 1 uF = 10°F, 1nF=10°F, 1 pF = 10 '? F,
etc. Besides its use in storing charge, a capacitor is a key element of most
ac circuits with important functions, as described in Chapter 7.

2.12 THE PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two large plane parallel conducting

plates separated by a small distance (Fig. 2.25). We first take the

intervening medium between the plates to be

Surface I Area A vacuum. The effect of a dielectric medium between
charge density o / the plates is discussed in the next section. Let A be
M " | the area of each plate and d the separation between

them. The two plates have charges Q and —-Q. Since
dis much smaller than the linear dimension of the

J J J J J plates (d? << A), we can use the result on electric
E

+ + + + + + + + + + +

d field by an infinite plane sheet of uniform surface

charge density (Section 1.15). Plate 1 has surface
—————————— charge density 0 = Q/A and plate 2 has a surface
f ) charge density —o. Using Eq. (1.33), the electric field

in different regions is:

Surface 11

charge density - & Outer region I (region above the plate 1),
FIGURE 2.25 The parallel plate capacitor.
E=—2-2-0 (2.39)
74 2, 2¢, :
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Outer region II (region below the plate 2),

_o o _,
2, 2&, (2.40)
In the inner region between the plates 1 and 2, the electric fields due
to the two charged plates add up, giving

o o o Q

E: =+ = — =
28, 2¢, & EA (2.41)

The direction of electric field is from the positive to the negative plate.

Thus, the electric field is localised between the two plates and is
uniform throughout. For plates with finite area, this will not be true near
the outer boundaries of the plates. The field lines bend outward at the
edges — an effect called ‘fringing of the field’. By the same token, ¢ will
not be strictly uniform on the entire plate. [E and o are related by Eq.
(2.35).] However, for d? << A, these effects can be ignored in the regions
sufficiently far from the edges, and the field there is given by Eq. (2.41).
Now for uniform electric field, potential difference is simply the electric
field times the distance between the plates, that is,

1 Qd
V=Ed=—=—
g A (2.42)
The capacitance C of the parallel plate capacitor is then
Q £ A
C = — = =
v d (2.43)

which, as expected, depends only on the geometry of the system. For
typical values like A = 1 m?, d = 1 mm, we get

o 885x 10"?C°N'm? x1m?
- 10°m
(You can check that if 1F= 1IC V' = 1C (NC'm)" =1 C*N'm™))
This shows that 1F is too big a unit in practice, as remarked earlier.
Another way of seeing the ‘bigness’ of 1F is to calculate the area of the
plates needed to have C = 1F for a separation of, say 1 cm:

=8.85x10°F (2.44)

Cd _ IF x10°m
& 8.85x107*C’N'm™
which is a plate about 30 km in length and breadth!

A= =10m? (2.45)

2.13 EFrreEcT OF DIELECTRIC ON CAPACITANCE

With the understanding of the behaviour of dielectrics in an external
field developed in Section 2.10, let us see how the capacitance of a parallel
plate capacitor is modified when a dielectric is present. As before, we
have two large plates, each of area A, separated by a distance d. The
charge on the plates is +Q, corresponding to the charge density o (with
o= Q/A). When there is vacuum between the plates,
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and the potential difference V,is

V, = Ed
The capacitance C, in this case is
_9__A
Co AR (2.46)

Consider next a dielectric inserted between the plates fully occupying
the intervening region. The dielectric is polarised by the field and, as
explained in Section 2.10, the effect is equivalent to two charged sheets
(at the surfaces of the dielectric normal to the field) with surface charge
densities . and —o . The electric field in the dielectric then corresponds
to the case when the net surface charge density on the plates is £(o— Gp).
That is,

o—o0,
E-—-+ (2.47)
80
so that the potential difference across the plates is
c-0
V=Ed-= Ed
& (2.48)

For linear dielectrics, we expect o,to be proportional to E_, i.e., to o.
Thus, (o0-0,)is proportional to ¢ and we can write

o—-0p = E (2.49)

where K is a constant characteristic of the dielectric. Clearly, K> 1. We
then have

_od Qd
&K Ag,K (2.50)
The capacitance C, with dielectric between the plates, is then
_9Q _ &KA
v d (2.51)

The product K is called the permittivity of the medium and is
denoted by ¢
e=¢,K (2.52)
Forvacuum K= 1 and €= &; &, is called the permittivity of the vacuum.
The dimensionless ratio

£

K=—
& (2.53)
is called the dielectric constant of the substance. As remarked before,
from Eq. (2.49), it is clear that Kis greater than 1. From Eqgs. (2.46) and

(2.51)

C
K=—
C, (2.54)
Thus, the dielectric constant of a substance is the factor (>1) by which
the capacitance increases from its vacuum value, when the dielectric is

inserted fully between the plates of a capacitor. Though we arrived at
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Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any
type of capacitor and can, in fact, be viewed in general as a definition of
the dielectric constant of a substance.

ELECTRIC DISPLACEMENT

We have introduced the notion of dielectric constant and arrived at Eq. (2.54), without
giving the explicit relation between the induced charge density ¢, and the polarisation P.
We take without proof the result that

o, =Pen

where n is a unit vector along the outward normal to the surface. Above equation is
general, true for any shape of the dielectric. For the slab in Fig. 2.23, P is along n at the
right surface and opposite to a at the left surface. Thus at the right surface, induced
charge density is positive and at the left surface, it is negative, as guessed already in our
qualitative discussion before. Putting the equation for electric field in vector form
; —Pen
Eep.O- PR
&
or (¢,E+P)en =0

The quantity ¢, E + P is called the electric displacement and is denoted by D. It is a
vector quantity. Thus,

D=¢,E+P,Den =0,

The significance of D is this : in vacuum, E is related to the free charge density o.
When a dielectric medium is present, the corresponding role is taken up by D. For a
dielectric medium, it is D not E that is directly related to free charge density o, as seen in
above equation. Since P is in the same direction as E, all the three vectors P, E and D are
parallel.

The ratio of the magnitudes of D and E is

D
D_ o5 _ £ K
E o-o0;

Thus,

D=¢ KE
andP=D-¢E=¢ (K-1)E
This gives for the electric susceptibility ¥, defined in Eq. (2.37)

X.=(K-1)

Example 2.8 A slab of material of dielectric constant K has the same
area as the plates of a parallel-plate capacitor but has a thickness
(3/4)d, where d is the separation of the plates. How is the capacitance
changed when the slab is inserted between the plates?

Solution Let E; = V,/d be the electric field between the plates when
there is no dielectric and the potential difference is V,,. If the dielectric
is now inserted, the electric field in the dielectric will be E = E /K.
The potential difference will then be

8'C TTINVXY
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1 E, 3
V=E,(—d)+—2(=d
ol 7 )+ K ( 1 )
1 3 K+3
=E,d=+—7)=YV,
® © (4 " 4K) ° 4K
I The potential difference decreases by the factor (K + 3)/4K while the
9 free charge Q, on the plates remains unchanged. The capacitance
g thus increases
2 c=Go_ 4K Qo _ 4K
V K+3V, K+3
2.14 CoMBINATION OF CAPACITORS
We can combine several capacitors of capacitance C,, C,...., C, to obtain
a system with some effective capacitance C. The effective capacitance
depends on the way the individual capacitors are combined. Two simple
possibilities are discussed below.
2.14.1 Capacitors in series
Figure 2.26 shows capacitors C, and C, combined in series.
The left plate of C, and the right plate of C, are connected to two
terminals of a battery and have charges Q and -Q,
respectively. It then follows that the right plate of C,
Q -9 9 -9 has charge -Q and the left plate of C, has charge Q.
+ + - If this was not so, the net charge on each capacitor
+ - + - would not be zero. This would result in an electric
+ + - field in the conductor connecting C,and C,. Charge
+ - + - would flow until the net charge on both C, and C,
¥ - + is zero and there is no electric field in the conductor
+ - + connecting C, and C,. Thus, in the series
+ _ + - combination, charges on the two plates (xQ) are the
" * same on each capacitor. The total potential drop V'
C, C, across the combination is the sum of the potential
drops V, and V, across C, and C,, respectively.
FIGURE 2.26 Combination of two Q Q9
capacitors in series. V= V1 + V2 = C_1 + C_2 (2.55)
Q Q Q9 Q@ Q Q 4 ! + !
- - - 9 -9 ie, 7=~ T~ , (2.56)
+ -+ -+ - + - 9 Cl C2
+ - - _ + _ Now we can regard the combination as an
+ -+ -+ - + - effective capacitor with charge @ and potential
_ + -t Y ~_ difference V. The effective capacitance of the
+ -+ -+ - + - combination is
+ -+ -+ - + - Q
+ + -+ - + - _ =
N N - B N - C v (2.57)
C c c We compare Eq. (2.57) with Eq. (2.56), and
FIGURE 2.27 Combination of n obtain
capacitors in series. 1l 1 N 1
78 c ¢ ¢ (2.58)
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The proof clearly goes through for any number of
capacitors arranged in a similar way. Equation (2.55),
for n capacitors arranged in series, generalises to

V=V1+V2+...+Vn=C%+C£;+...+C£n (2.59)
Following the same steps as for the case of two
capacitors, we get the general formula for effective
capacitance of a series combination of n capacitors: Q -0, Q -9,

1 1 1 1 1

s — =
c c'c c C. (2.60)

©
|
||||£0
©
1
©

++++ |+ ++
LI I B |

++++ | ++++

2.14.2 Capacitors in parallel

++++ | ++++

++++ [+ ++

Figure 2.28 (a) shows two capacitors arranged in
parallel. In this case, the same potential difference is
applied across both the capacitors. But the plate charges
(x@Q)) on capacitor 1 and the plate charges (£Q,) on the
capacitor 2 are not necessarily the same:

Q,=CV,Q,=CV (2.61)

The equivalent capacitor is one with charge

9=0+09, (2.62)

and potential difference V.

Q=CV=C/V+C,V (2.63)

The effective capacitance C is, from Eq. (2.63),

C=C,+C, (2.64)

The general formula for effective capacitance C for (b)
parallel combination of n capacitors [Fig. 2.28 (b)] FIGURE 2.28 Parallel combination of
follows similarly, (a) two capacitors, (b) n capacitors.

=0, +0Q,+...+Q, (2.65)

ie, CV=CV+C,V+..CV (2.66)

which gives

C=C +C,+...C, (2.67)

Example 2.9 A network of four 10 uF capacitors is connected to a 500 V
supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance
of the network and (b) the charge on each capacitor. (Note, the charge
on a capacitor is the charge on the plate with higher potential, equal
and opposite to the charge on the plate with lower potential.)

£

T <p
©
|
©

++++ [+

O

=

1
|

+Q -Q
B *‘ - ©
C2-
_Q_ I + 4 +++Q
©
"'Qﬁ++c1 3""_Q
¢ )
A j‘ = D g
+Q -9 )
500 V- > !Q
FIGURE 2.29 © 79
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Solution
(a) In the given network, C,, C, and C, are connected in series. The
effective capacitance C’ of these three capacitors is given by
1 1 1 1
=—+—+—
C C G G
For C, = C,= C,= 10 uF, C’=(10/3) uF. The network has C”and C,
connected in parallel. Thus, the equivalent capacitance C of the
network is
, 10
cC=C+C,= (?+10) uF =13.3uF
(b) Clearly, from the figure, the charge on each of the capacitors, C,,
C, and C, is the same, say Q. Let the charge on C,be Q". Now, since
the potential difference across AB is Q/C,, across BC is Q/C,, across
CDis Q/C, ., we have
9 + 9 -+ 9 =500V
G G G
o Also, Q°/C,= 500 V.
2 This gives for the given value of the capacitances,
|
% Q=500Vx%uF=1.7x10‘SC and
& Q' =500V x10uF=5.0x10°C
2.15 ENERGY STORED IN A CAPACITOR
A capacitor, as we have seen above, is a system of two conductors with
charge Q and -Q. To determine the energy stored in this configuration,
consider initially two uncharged conductors 1 and 2. Imagine next a
process of transferring charge from conductor 2 to conductor 1 bit by
bit, so that at the end, conductor 1 gets charge Q. By
Q _0-50" 0 -9 charge copserva‘uon, conductor 2 has charge -Q at
+ _ + _ the end (Fig 2.30).
—’_
+ - = In transferring positive charge from conductor 2
+ 5Q -~ R — to conductor 1, work will be done externally, since at
e T * _| any stage conductor 1 is at a higher potential than
+ +— - +T>—— y g g p
+ _ y— conductor 2. To calculate the total work done, we first
+ + " =| calculate the work done in a small step involving
- - oo . L1
+ — transfer of an infinitesimal (i.e., vanishingly small)
) * h 5 ) — 5 amount of charge. Consider the intermediate situation

(a)

when the conductors 1 and 2 have charges Q" and
(b) —@’respectively. At this stage, the potential difference

FIGURE 2.30 (a) Work done in a small ~ V’between conductors 1 to 2 is Q’/C, where C is the
step of building charge on conductor 1 capacitance of the system. Next imagine that a small
from Q" to Q"+ 6 Q" (b) Total work done  charge §Q’is transferred from conductor 2 to 1. Work

in charging the capacitor may be
viewed as stored in the energy of
electric field between the plates.

80

done in this step (6 W), resulting in charge Q” on
conductor 1 increasing to Q@+ § Q’, is given by

SW =V'6Q = %59' (2.68)
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